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Nicotinic acid: an old drug with a promising future
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Nicotinic acid has been used for decades to treat dyslipidaemic states. In particular its ability to raise the plasma HDL
cholesterol concentration has led to an increased interest in its pharmacological potential. The clinical use of nicotinic acid is
somewhat limited due to several harmless but unpleasant side effects, most notably a cutaneous flushing phenomenon. With
the recent discovery of a nicotinic acid receptor, it has become possible to better understand the mechanisms underlying the
metabolic and vascular effects of nicotinic acid. Based on these new insights into the action of nicotinic acid, novel strategies
are currently under development to maximize the pharmacological potential of this drug. The generation of both flush-
reducing co-medications of nicotinic acid and novel drugs targeting the nicotinic acid receptor will provide future therapeutic
options for the treatment of dyslipidaemic disorders.
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Introduction

The reduction of the plasma levels of cholesterol associated

with proatherogenic ‘low-density lipoprotein’ (LDL) particles

is one of the most important therapeutic measures to reduce

cardiovascular morbidity and mortality. LDL cholesterol

plasma levels can be pushed far below 100 mg per 100 ml

by the inhibition of cholesterol synthesis, using HMG-CoA-

reductase inhibitors (statins) alone or in combination with

cholesterol-resorption inhibitors. Despite this very effica-

cious treatment, clinical studies have shown that even an

aggressive reduction in LDL cholesterol reduces the occur-

rence of cardiovascular events by only 25–40% (Mahley and

Bersot, 2006). This result is due to the fact that high LDL

cholesterol levels are not the only risk factor for cardiovas-

cular diseases. In addition to genetic factors, hypertension,

age and cigarette smoking, low ‘high-density lipoprotein’

(HDL) cholesterol levels are also an independent risk factor

(Gordon et al., 1977; Castelli et al., 1986). Currently, HDL

cholesterol levels of p40–45 mg per 100 ml are regarded as a

risk factor for coronary heart disease, whereas levels 460 mg

per 100 ml are considered protective (Grundy et al., 2004).

The development of new strategies to elevate HDL cholesterol

plasma levels has therefore been intensified in recent years

(Chapman, 2006; Rader, 2006). One of the most promising

new approaches to raise HDL cholesterol levels, inhibition of

the cholesterol ester transfer protein (CETP) (Le Goff et al.,

2004), has recently suffered a setback when the CETP

inhibitor torcetrapib failed in the phase III trials (Nissen

et al., 2007). Currently, the oldest lipid-modifying drug,

nicotinic acid (niacin), is attracting renewed attention as it

has the strongest HDL cholesterol-elevating effect among the

drugs currently approved for the treatment of lipid disorders

(Table 1). In this review, we will summarize the pharmacology

of nicotinic acid with particular focus on recent findings that

have elucidated the mechanisms underlying some of the

effects of nicotinic acid.

Clinical use of nicotinic acid

Nicotinic acid has profound and unique effects on lipid

metabolism and is thus referred to as a ‘broad-spectrum lipid

drug’ (Carlson, 2005). In addition to elevating HDL choles-

terol (Parsons and Flinn, 1959; Shepherd et al., 1979) as well

as decreasing both LDL and total cholesterol (Altschul et al.,

1955; Carlson et al., 1977), nicotinic acid also induces a

decrease in the concentrations of both ‘very-low-density

lipoproteins’ (VLDL) and plasma triglyceride (TG) (Table 1;

Carlson et al., 1989). The plasma concentration of lipo-

protein Lp(a), which has been suggested to play a role as an

independent risk factor for coronary heart disease, is also

decreased by nicotinic acid (Carlson et al., 1989; Berglund
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and Ramakrishnan, 2004). Soon after the initial discovery of

the lipid-modifying effect of high doses of nicotinic acid

(Altschul et al., 1955), the water-soluble vitamin nicotinic

acid was introduced into clinical therapy as the first lipid-

modifying drug. In the Coronary drug project, conducted

from 1966 to 1975, nicotinic acid administered as mono-

therapy at 3 g day�1 was shown to lead to an efficient

secondary prevention of myocardial infarction (Table 2)

(Coronary Drug Project Research Group, 1975). A follow-up

study of the Coronary Drug project revealed that nicotinic

acid also reduced the mortality of patients who had been

treated with nicotinic acid (Canner et al., 1986). The

Stockholm ischaemic heart disease secondary prevention

study came to similar findings (Carlson and Rosenhamer,

1988). With the introduction of cholesterol synthesis

inhibitors (statins) in the therapy of hypercholesterolaemia

during the late 1980s, interest in the therapeutic potential of

nicotinic acid decreased. However, in recent years, several

clinical studies have been conducted to test whether

nicotinic acid provides a benefit to patients who are

receiving treatment with statins but still display low HDL

cholesterol levels. Both the HDL Atherosclerosis Treatment

Study and the Arterial Biology for the Investigation of the

Treatment Effects of Reducing Cholesterol study indicate

that patients with low HDL cholesterol levels benefit from a

treatment with nicotinic acid in addition to statins (Brown

et al., 2001; Taylor et al., 2004). However, both studies are

relatively small and have some limitations, including

the lack of an ideally designed control group in HDL

Atherosclerosis Treatment Study or the evaluation of the

intima-media thickness of the carotid artery as a surrogate

parameter for the development of clinically relevant athero-

sclerosis in the Arterial Biology for the Investigation of the

Treatment Effects of Reducing Cholesterol study. In any case,

there is good evidence supporting a therapeutic benefit of

nicotinic acid (Brown, 2005), and randomized long-term

studies to evaluate the effect of nicotinic acid in addition to

statins in patients with low HDL cholesterol levels and

increased cardiovascular risk have recently been initiated

(Brown, 2006).

Nicotinic acid effects on lipid metabolism

The most rapid effect of nicotinic acid on lipid metabolism is

a decrease in plasma levels of free fatty acid , which can be

observed within minutes upon administration of the drug.

After a few hours, the plasma VLDL and TG levels are

reduced, whereas the LDL and HDL cholesterol levels are

changed only after several days of treatment (Carlson et al.,

1968a). Soon after the discovery of the cholesterol-lowering

effect of nicotinic acid, the still-prevailing hypothesis was

formulated that the effects of nicotinic acid on LDL and HDL

cholesterol levels are the result of a very rapid antilipolytic

effect on adipocytes (Figure 1). This was based on studies

in vivo as well as in vitro using isolated adipocytes (Carlson

and Orö, 1962; Carlson, 1963; Butcher et al., 1968). The rapid

decrease in plasma free fatty acid levels due to the

antilipolytic effect of nicotinic acid is believed to result in

reduced supply of substrate for the hepatic synthesis of TGs

Table 2 Clinical trials, which have evaluated the effect of nicotinic acid in the prevention of cardiovascular diseases

Study Method Placebo Nicotinic acid P-value

Coronary Drug Project (1975) 8341 patients after myocardial infarction
5 years, 3 g day�1 myocardial infarctiontotal mortality

12.2%
20.9%

8.9%
21.2%

o0.05
NS

Canner et al. (1986) Coronary Drug Project follow-up after 15 years
Total mortality

58.2% 52% o0.005

Carlson and Rosenhammer (1988) 276 patients after myocardial infarction nicotinic
acidþ clofibrate
Total mortality

29.7% 21.8% o0.05

HATSa, (58) 160 patients with coronary heart disease and low HDL
cholesterol (males o35 mg per 100 ml; females o40 mg per
100 ml), 3 years nicotinic acid
(2–4 g day�1) þ simvastatin (10–20 mg day�1)
Cardiovascular events

NTb 3%

ARBITER 2c, Taylor et al. (2004) 167 patients with coronary heart disease and low HDL
cholesterol (o45 mg per 100 ml), 1 year nicotinic acid
(1 g day�1)þ simvastatin
Increase in intima-media thickness of carotid artery

0.044 mm 0.014 mm o0.08

Abbreviations: HDL, high-density lipoprotein; NS, not significant; NT, not tested.
aHDL Atherosclerosis Treatment Study (Brown et al., 2001).
bA placebo group (simvastatin only) was not studied in the HATS trial. The clinical and angiographic benefit of a combination treatment with simvastatin and

nicotinic acid was, however, far higher than would have been expected with a simvastatin only treatment.
cArterial Biology for the Investigation of the Treatment Effects of Reducing Cholesterol (Taylor et al., 2004).

Table 1 Effect of various lipid-modifying drugs

LDL-C HDL-C TG

Statins 20–55% k 5–10% m 7–30% k
Fibrates 5–20% k 10–20% m 20–50% k
Nicotinic acid 5–25% k 15–35% m 20–50% k
Anion exchange resins 10–20% k 3–5% m —
Ezetemibe 15–20% k (m) (k)

Abbreviations: HDL-C, high-density lipoprotein cholesterol; LCL-D, low-density

lipoprotein cholesterol; TG, triglycerides.
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and VLDL particles (Lewis, 1997), which in turn leads to

reduced formation of LDL particles (Figure 1). Recent studies

in a hepatoblastoma cell line have suggested that nicotinic

acid may have direct effects on hepatocytes, and may

decrease hepatic VLDL and TG synthesis by the inhibition

of diacylglycerol acyl transferase 2 and accelerating the

intracellular degradation of apoprotein B (Jin et al., 1999;

Ganji et al., 2004). However, these in vitro effects were

observed only at nicotinic acid concentrations considerably

higher than the plasma concentrations required for the

in vivo effects on the plasma levels of TG and VLDL.

It is also not clear how nicotinic acid induces an increase

in HDL cholesterol levels. The most plausible hypothesis is

based on the well-established inverse correlation between TG

levels and plasma HDL cholesterol concentrations (Szapary

and Rader, 2001), which is primarily due to the exchange of

TGs and cholesterol esters between apoprotein B-containing

lipoproteins (especially VLDL and LDL) and HDL, which is

mediated by CETP. According to this concept, the decrease in

TG concentration in VLDL and LDL particles in response to

nicotinic acid results in a reduced exchange of cholesterol

esters and TGs and a subsequent increase in the plasma

concentration of HDL cholesterol (Figure 1). This hypothesis

is supported by the fact that inhibition of CETP has very

similar effects to nicotinic acid treatment on the plasma

concentration of HDL , in that both cause an elevation of the

HDL2 fraction (Le Goff et al., 2004). Interestingly, in mice,

which do not express CETP, the relatively high basal HDL

cholesterol levels are rather decreased by nicotinic acid.

Yet transgenic mice expressing the human CETP gene

show lowered levels of basal HDL cholesterol and respond

with an increase in HDL cholesterol levels to nicotinic acid

treatment (Hernandez et al., 2007). However, it has also been

proposed that nicotinic acid increases plasma HDL levels

by decreasing the catabolism of HDL (Blum et al., 1977;

Shepherd et al., 1979). In addition, millimolar concentra-

tions of nicotinic acid have been shown to decrease the

uptake of HDL-apoprotein A-I by a hepatoma cell line in vitro

(Jin et al., 1997).

Recent studies have also suggested that some of the

beneficial long-term effects of nicotinic acid may, at least

in part, involve macrophages. Nicotinic acid has been shown

to increase the expression of peroxisome proliferator-

activated receptor-g and to enhance peroxisome prolifera-

tor-activated receptor-g transcriptional activity in macro-

phages (Rubic et al., 2004; Knowles et al., 2006). However,

the mechanism underlying this effect and its pharmacologi-

cal relevance are still unclear.

The nicotinic acid receptor

Over 25 years ago, a nicotinic acid receptor on adipocytes

was postulated based on the observation that the strong and

rapid antilipolytic effects of nicotinic acid are mediated by a

Gi-dependent inhibition of adenylyl cyclase (Aktories et al.,

1980). Following the demonstration of specific binding sites

for nicotinic acid on plasma membranes of adipocytes and

spleen cells (Lorenzen et al., 2001), the receptor for nicotinic

acid was identified (Soga et al., 2003; Tunaru et al., 2003;

Wise et al., 2003) as the orphan receptor GPR109A, also

referred to as HM74A in humans and protein up-regulated in

macrophages by interferone-g (PUMA-G) in mice. In addi-

tion to brown and white adipose tissue, GPR109A is also

expressed in various immune cells, including monocytes,

macrophages, dendritic cells and neutrophils (Yousefi et al.,

2000; Schaub et al., 2001; Soga et al., 2003; Tunaru et al.,

2003; Wise et al., 2003; Maciejewski-Lenoir et al., 2006).

GPR109A is coupled to Gi type G proteins, and its activation

by nicotinic acid results in a Gi-mediated inhibition of

adenylyl cyclase, resulting in a decrease in intracellular cyclic

AMP levels. This cyclic nucleotide is the principal mediator

of adipocyte lipolysis (Figure 1). Lipolysis is increased when

cAMP levels are elevated due to increased adenylyl cyclase

activity, for example, by b-adrenergic receptor activation or

by decreased phosphodiesterase-mediated cAMP degradation

(Duncan et al., 2007). Thus, the nicotinic acid-induced,

GPR109A-mediated adenylyl cyclase inhibition counteracts

the prolipolytic effects of elevated intracellular cAMP levels.

The relevance of the nicotinic acid receptor GPR109A as a

mediator of the pharmacological effects of nicotinic acid

could be demonstrated in mice lacking GPR109A. In these

animals, the nicotinic acid-induced antilipolytic effects on

fat cells as well as the decrease in the plasma levels of free

fatty acid and TG in response to nicotinic acid are abrogated

(Tunaru et al., 2003). Thus, strong evidence exists that at

Figure 1 Mechanisms of nicotinic acid-induced changes in lipid metabolism. ATGL, adipocyte-triacylglycerol-lipase; CETP, cholesterol ester
transfer protein; FFA, free fatty acid; HSL, hormone-sensitive lipase; PKA, protein kinase A; TG, triglyceride.
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least the initial steps of the nicotinic acid-induced changes

in lipid metabolism are mediated by GPR109A.

The closest homologue of the human GPR109A is

GPR109B, which is not found in rodents and clearly

represents the result of a relatively recent gene duplication

(Zellner et al., 2005). Interestingly, nicotinic acid and related

drugs with comparable pharmacological effects, such as

acipimox (Fuccella et al., 1980; Tornvall and Walldius,

1991), bind to GPR109A but not to GPR109B (Soga et al.,

2003; Tunaru et al., 2003; Wise et al., 2003). However, the

furan carboxylic acid acifran is able to activate both receptors

(Wise et al., 2003; Figure 2). Several heterocyclic small

molecules have been shown to act as selective agonists of

GPR109A, however, none of them appear to surpass

nicotinic acid with regard to potency (Wang and Fotsch,

2006; Gharbaoui et al., 2007; Jung et al., 2007; Soudijn et al.,

2007). Recently, a variety of 1- and 2-substituted benzotria-

zole-5-carboxylic acids, such as 1-isopropyl-benzotriazole-5-

carboxylic acid, have been reported to be selective and

relatively potent agonists at GPR109B (Semple et al., 2006).

Nicotinamide, which shares with nicotinic acid its function

as a vitamin but has no pharmacological effects comparable

to nicotinic acid, does not activate any of the receptors

(Soga et al., 2003; Tunaru et al., 2003; Wise et al., 2003).

Under physiological conditions, nicotinic acid concentra-

tions in the plasma are relatively low, thus nicotinic acid is

unlikely to be the endogenous ligand for GPR109A. Recently,

the endogenous ketone body b-hydroxybutyrate was

shown to selectively activate GPR109A (Taggart et al.,

2005). The potency of b-hydroxybutyrate is relatively low

(EC50¼750 mM) yet does fall within its physiological con-

centrations in the plasma, which range from 50 to 400 mM

under normal conditions to as high as 6–8 mM under

starvation conditions. Thus, GPR109A appears to mediate

the known antilipolytic effect of high concentrations of

b-hydroxybutyrate, a negative feedback mechanism that

may contribute to metabolic homoeostasis during starvation

(Senior and Loridan, 1968).

All known agonists of the nicotinic acid receptor GPR109A

have in common that they are relatively small molecules,

which contain a carboxylic acid moiety. Intensive mutagen-

esis studies of the nicotinic acid receptor suggest that the

binding pocket is formed by transmembrane helices 2, 3

and 7 (Figure 3), and that an arginine residue (Arg111) in the

transmembrane helix 3 represents the anchor point for

the carboxylic acid group of nicotinic acid and other

receptor agonists (Tunaru et al., 2005). Other important

contacts of the pyridine ring of nicotinic acid with the

Figure 3 Model of GPR109A-binding nicotinic acid. (left panel) View on the extracellular site of the receptor, which binds nicotinic acid
(yellow) in its binding pocket from transmembrane helices 2, 3 and 7. (right panel) Model of the most important interactions of nicotinic acid
with amino-acid residues of the receptor. TMH, transmembrane helix; ECL, extracellular loop. The coordinates used to draw the model were
generated by J Lättich and G Krause (FMP, Berlin) (Tunaru et al., 2005).

Figure 2 Properties (a) and structures (b) of various ligands of
GPR109A and GPR109B. EC50 values were determined by measuring
binding of GTPgS to membranes or by measuring adenylyl cyclase
inhibition. 1-IPBT-5-CA, 1-isopropyl-benzotriazole-5 carboxylic acid.
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receptor have been suggested to be localized at the extracellular

junction of transmembrane helix 2, the extracellular loop 1

and the transmembrane helix 7. A serine residue (Ser178) in

the extracellular loop 2 is essential for binding nicotinic acid to

the receptor and may mediate the interaction with the

nitrogen of the pyridine ring (Tunaru et al., 2005).

Pharmacokinetics

After oral administration, nicotinic acid is absorbed rapidly

and maximal plasma concentrations are reached after

30–60 min. The plasma half-life after administration of 1 g

nicotinic acid is around 1 h (Carlson et al., 1968b; Svedmyr

and Harthon, 1970). Nicotinic acid is in part metabolized by

the liver and in part excreted unchanged by the kidney. At

low doses, a considerable fraction of nicotinic acid is

metabolized via nicotinamide to N-methyl-nicotinamide,

which is then further metabolized to N-methyl-2-pyridon-5-

carboxamide and N-methyl-4-pyridon-5-carboxamide and

are then renally excreted (Stern et al., 1992). At intermediate

and high pharmacological doses (1–3 g), an increasing

fraction of nicotinic acid is conjugated with glycin and then

excreted as nicotinuric acid by the kidney. With increasing

doses, the direct renal excretion of nicotinic acid predomi-

nates (Petrack et al., 1966).

The nicotinic acid-induced flushing response

Nicotinic acid, when given at pharmacological doses, has

several unwanted yet harmless effects. The most common

and most prominent unwanted effect of nicotinic acid is a

cutaneous vasodilation, most prominently in the upper half

of the body and in the face, which lasts for 1–2 h after an oral

dose of nicotinic acid (Goldsmith and Cordill, 1943). This

cutaneous reaction, called flushing, is relatively unpleasant

and therefore negatively influences patients’ compliance.

This dilatory effect on dermal blood vessels is also the basis

of the local effects of some dermatic formulations of

nicotinic acid esters, including propyl-, benzyl- or methyl-

nicotinate. In contrast to the nicotinic acid effects on lipid

metabolism that are stable over long periods of treatment

with nicotinic acid, the nicotinic acid-induced flushing

response is subject to some tolerance, resulting in a reduced

flushing response in the course of weeks (Stern et al., 1991).

Recent studies in GPR109A-deficient mice have shown

that the nicotinic acid-induced flushing response is

mediated by the nicotinic acid receptor (Benyó et al.,

2005). The failure of GPR109A-deficient mice to respond to

nicotinic acid with cutaneous vasodilation can be rescued

by transplanting wild-type bone marrow to irradiated

GPR109A-deficient animals (Benyó et al., 2005), strongly

suggesting that the receptor on bone marrow-derived cells

and not on adipocytes mediates the flushing response. This

finding, along with the fact that topical application of

skin-permeable nicotinic acid esters results in a cutaneous

reaction indistinguishable from the response induced by

systemic application of nicotinic acid, suggests that the nico-

tinic acid-induced flushing response is a local phenomenon

induced by activation of the receptor on dermal or epidermal

immune cells. Strong evidence has been provided that

epidermal Langerhans cells are critically involved in the

nicotinic acid-induced flushing response (Benyó et al., 2006;

Maciejewski-Lenoir et al., 2006). This is based on the

observation that Langerhans cells express GPR109A and

respond to nicotinic acid with an increase in intracellular

Ca2þ as well as the formation of prostanoids (Maciejewski-

Lenoir et al., 2006). In addition, nicotinic acid does not

induce a flushing response in mice, which are depleted of

Langerhans cells (Benyó et al., 2006).

It has long been known that treatment with COX

inhibitors can reduce the nicotinic acid-induced flushing

response while having no effect on the beneficial effects of

nicotinic acid (Andersson et al., 1977; Eklund et al., 1979;

Kaijser et al., 1979). Indeed, prostanoids, especially prosta-

glandin D2 (PGD2) or their metabolites, have been shown to

be produced after administration of nicotinic acid (Morrow

et al., 1989; Stern et al., 1991). Pharmacological and genetic

evidence from studies in mice clearly indicates that the

nicotinic acid-induced flushing response is mediated by

PGD2 and prostaglandin E2, which dilate dermal blood

vessels via the activation of DP1 and EP2/EP4 receptors

(Benyó et al., 2005; Cheng et al., 2006). From these and other

data, a model of the nicotinic acid-induced flushing response

has emerged. Nicotinic acid induces an increase in intra-

cellular Ca2þ via activation of GPR109A on epidermal

Langerhans cells. This results in the activation of a Ca2þ -

sensitive phospholipase A2 and the formation of arachidonic

acid, which is further metabolized to PGD2 and prostaglan-

din E2. Both prostanoids are then able to induce the dilation

of blood vessels in the upper layer of the dermis by activation

of their Gs-coupled receptors (Figure 4).

Several strategies have been proposed to reduce nicotinic

acid-induced flushing. It is, for example, generally recom-

mended to gradually increase the daily dose over a period of

1–4 months. As the onset of flushing rapidly follows the

increase in nicotinic acid plasma levels after oral ingestion,

slow-release formulations of nicotinic acid have been

generated, which result in a delay and decrease of the peak

plasma concentration of nicotinic acid and hence lead to

fewer flushing events (Knopp et al., 1998). The fact that the

antilipolytic effects of nicotinic acid as well as the flushing

response are mediated by GPR109A makes it difficult to

Figure 4 Proposed mechanism of the nicotinic acid-induced
flushing response. AA, arachidonic acid; COX-1, cyclooxygenase-1;
PGD2, prostaglandin D2; PGE2, prostaglandin E2; PLA2, phospho-
lipase A2.
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dissociate these two effects by generating new synthetic

agonists of GPR109A. However, recent data indicate that

partial agonists of GPR109A may have a reduced efficacy

with regard to the induction of flushing while retaining

mainly their antilipolytic activity (Richman et al., 2007). An

alternative approach to reduce the unwanted flushing

response could be the co-application of drugs that interfere

with the downstream mechanisms of the nicotinic acid-

induced flushing response. COX inhibitors including aspirin

have been shown to reduce the flush response to nicotinic

acid (Oberwittler and Baccara-Dinet, 2006), however, their

side effects preclude long-term administration. Based on the

recent elucidation of the mechanisms underlying nicotinic

acid-induced flushing (see above), the specific inhibition of

PGD2 and prostaglandin E2 formation or action appears to be

a very promising strategy. In fact, it has recently been shown

that the DP1 receptor antagonist laropiprant (MK-0524)

inhibits the nicotinic acid-induced flushing response in

humans (Cheng et al., 2006; Lai et al., 2007).

Other unwanted effects

In some cases, the application of nicotinic acid has been

reported to result in gastrointestinal effects, such as dyspepsia,

diarrhoea or nausea. The mechanisms of these unwanted

effects are unclear. Increases in plasma transaminase activity

indicating a hepatotoxic effect have been reported in patients

treated with nicotinic acid. This effect appears to be more

frequently observed when sustained-release formulations of

nicotinic acid are given, suggesting that an increased hepatic

metabolism underlies this hepatotoxic effect (Etchason et al.,

1991; Dalton and Berry, 1992). Patients predisposed to

hyperuricaemia and gout have been reported to display a

tendency towards elevated plasma levels of uric acid in

response to nicotinic acid, which is likely due to a competition

of nicotinic acid and uric acid for the same renal excretion

mechanism (Anzai et al., 2007).

Patients suffering from type II diabetes mellitus often have

dyslipidaemic changes characterized by an increase in TG

levels as well as a decrease in HDL cholesterol levels. Given the

characteristic profile of the pharmacological effects of nico-

tinic acid on lipid metabolism, nicotinic acid should counter-

act the dyslipidaemic changes in diabetic patients. However,

several reports have been published indicating that nicotinic

acid increases insulin resistance (Garg and Grundy, 1990;

McCulloch et al., 1991). The mechanisms of this unwanted

effect remain unclear. Recent analyses have, however, indi-

cated that the risk–benefit ratio of nicotinic acid therapy in

diabetic patients was similar to that of patient with normal

glucose tolerance (Grundy et al., 2002; Canner et al., 2005).

A final assessment of the effects of long-term nicotinic acid

treatment in patients with diabetes mellitus is currently not

possible, and rigid glycemic control should be ensured in

diabetic or prediabetic patients treated with nicotinic acid.

Conclusions

Nearly 50 years ago, nicotinic acid was introduced into

clinical practice as the first lipid-modifying drug. Its status

among the growing number of antidyslipidaemic drugs has

changed over the years. With the increased awareness of the

role low HDL cholesterol levels play as a risk factor for

cardiovascular diseases, the strong HDL cholesterol-elevating

effect of nicotinic acid has resulted in an increased interest in

the pharmacological properties of this drug. The clinical use

of nicotinic acid, however, has been hampered by harmless

but unpleasant side effects, primarily the flushing phenom-

enon. With the recent discovery of a specific receptor for

nicotinic acid, the molecular mechanisms underlying the

pharmacological effects of nicotinic acid have become

clearer. In the upcoming years, it will be important to fully

understand which of the effects are mediated by the receptor

and which are not. Research on the mechanisms of nicotinic

acid has already strongly influenced the development of new

drugs for the treatment of dyslipidaemic states. New agents

acting via the nicotinic acid receptor are currently being

developed in various pharmaceutical companies. In addi-

tion, new co-medications, which aim to suppress the

nicotinic acid-induced flushing response without affecting

the wanted effects of nicotinic acid, are being tested.
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